Слушать аудиоверсию статьи

Поболтать с Алисой, найти подходящий фильм на выходные, послушать музыку, которая точно понравится, построить маршрут без пробок — все это возможно благодаря нейросетям и искусственному интеллекту (ИИ), который все активнее внедряется в обычную жизнь. 

Мы уже не обращаем внимания, как точно попадают в наши вкусы видео и посты в рекомендательных лентах, как четко работает поиск по изображениям, не удивляемся, когда видим релевантную и полезную рекламу — все это возможно благодаря ИИ. Искусственный интеллект используют и в бизнесе: например, в небольшой пекарне на основе данных за несколько лет можно рассчитать, сколько хлеба и выпечки производить, чтобы не выкидывать лишнее, а в крупном банке ИИ за 5 минут принимает решение о выдаче кредита без участия менеджера. 

Помните новости о том, что скоро многих работников заменит искусственный интеллект? Это происходит уже сейчас, но точно не с AI-разработчиками — специалистами по работе с ИИ, спрос на которых растет каждый год. 

Чтобы нейросеть работала правильно, ее нужно обучать: загружать в нее миллионы строк данных, в которых она будет находить закономерности и распределять объекты по определенным признакам. Обучением и моделированием нейросетей занимаются люди. Специалистом по машинному обучению легко стать даже с минимальными знаниями математики и языка Python, знакомых еще с вуза, если знать, как выстроить процесс обучения. В этой статье рассмотрим путь специалиста по нейросетям и искусственному интеллекту, который хочет в будущем работать в этой сфере.

Нейросети: с чего начать

Нейросети и ИИ — это узкая специализация Data Scientist, специалиста по большим данным. Поэтому сначала нужно изучить науку о данных, а потом выходить на следующий уровень. 

Обучение Data Science начинается с основ: математика, статистика, математический анализ и теория вероятности. В университете эти предметы часто оторваны от реальности, поэтому важно найти курсы, где базу дадут с примерами из задач бизнеса. 

Например, в GeekUniversity на факультете Искусственного интеллекта математический анализ и линейную алгебру сразу преподают с точки зрения использования методов и алгоритмов в машинном обучении. Знания ложатся в голову гораздо быстрее, если понимаешь, как будешь применять их в своей будущей работе.

Дальше — основы программирования: язык Python, работа с Linux, библиотеки Python для Data Science: Numpy, Matplotlib, Scikit-learn, базы данных и SQL. На курс по нейросетям лучше идти уже с небольшой базой: будет достаточно тех знаний по математике, Python и SQL, которые вы изучали самостоятельно или в университете. Курсы помогут обновить и дополнить базу, чтобы двигаться к главному — Machine Learning и работе с искусственным интеллектом.

Погружаемся в машинное обучение 

Зная методы линейной алгебры и владея языком программирования Python, вы можете строить модели анализа данных, которые помогают реальному бизнесу оптимизировать процессы и больше зарабатывать.

Сначала вы получаете задачу: например, спрогнозировать отток клиентов в следующем месяце. Для решения этой задачи вам нужно собрать данные за прошлые периоды, очистить их, подготовить признаки, по которым модель будет работать с информацией, а затем построить и внедрить эту модель. На выходе вы получите прогноз, который бизнес использует для построения стратегии маркетинга на следующий месяц, чтобы уменьшить отток — так специалист по big data сэкономит ему миллионы рублей. Именно поэтому спрос на специалистов по машинному обучению высокий: прибыль в разы перекрывает затраты на работу с большими данными.

На курсе GeekUniversity после модуля про машинное обучение вы научитесь оценивать эффективность и повышать качество своих моделей анализа данных, а для закрепления знаний самостоятельно выполните курсовой проект на выбор: классификация людей с сердечно-сосудистыми заболеваниями, предсказание спроса на товар, предсказание стоимости акций или классификация отзывов в приложении. Все проекты — примеры реальных задач, которые вам предстоит решать в будущем в качестве специалиста по машинному обучению.

Введение в нейронные сети

Понимая, как собирать и анализировать большие данные, вы можете работать с более сложными моделями и задачами. Нейросети в какой-то степени пытаются приблизиться к человеческому мозгу: мы распознаем окружающие предметы мгновенно, знаем, когда перед нами такса, а когда — персидская кошка, а компьютеру для выполнения таких задач нужно обучиться и обработать миллионы изображений кошек и собак разных пород. Специалист по нейросетям знает, как именно нужно ее обучать, какие данные загружать и какие алгоритмы использовать. 

Для этого нужно изучить структуру глубоких, свёрточных и рекуррентных нейронных сетей, понимать алгоритмы обратного распространения ошибки, принципы обучения и подбор гиперпараметров для нейронных сетей.

Нейросети разрабатывают во фреймворках: Tensorflow, Keras, PyTorch, работать с ними тоже нужно учиться, причем не в теории, а на практике. 

Изображения и видео обрабатывают с помощью методов компьютерного зрения, а текст — с помощью методов NLP, обработки естественного языка. Специалист по нейросетям умеет создавать модели, которые могут распознавать лица и действия, отслеживать траекторию объекта на видео, извлекать краткое содержания текста, синтезировать голос из текста.

На факультете Искусственного интеллекта GeekUniversity после модуля про нейросети вы выполняете вторую курсовую работу: создадите чат-бота в Telegram, предскажете отток пользователей сотового оператора или разработаете собственную рекомендательную систему фильмов или книг.

Курс даст вам не просто знания и навыки, но и реальный опыт, с которым вам будет доступно в 5 раз больше вакансий, чем для новичков.

Важный и приятный бонус: после обучения GeekUniversity гарантирует трудоустройство, а также выдает сертификат о профессиональной переподготовке, поэтому вы сразу сможете найти работу.

Если хотите разрабатывать нейросети и готовы погрузиться в мир ИИ, приходите на курс.

You May Also Like
Путь в профессию: как стать дизайнером интерьеров
Читать статью

Путь в профессию: как с нуля стать дизайнером интерьеров

Давно мечтали создавать дизайн интерьеров? Почитайте, как осуществить эту мечту, где этому учиться и какие качества нужны дизайнеру интерьеров.
Читать статью
Data Science с нуля: языки, книги и курсы для начинающих специалистов по данным
Читать статью

Data Science с нуля: языки, навыки и курсы для начинающих специалистов по данным

Если вы любите математику, статистику, умеете и любите программировать и хотите зарабатывать 300-600 тысяч рублей в месяц, идите в анализ больших данных и машинное обучение — Data Science.
Читать статью